
Dynamical Casimir effect with semi-transparent mirrors, and cosmology

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 164061

(http://iopscience.iop.org/1751-8121/41/16/164061)

Download details:

IP Address: 171.66.16.148

The article was downloaded on 03/06/2010 at 06:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/16
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 164061 (9pp) doi:10.1088/1751-8113/41/16/164061

Dynamical Casimir effect with semi-transparent
mirrors, and cosmology*

Emilio Elizalde

Instituto de Ciencias del Espacio (CSIC), Institut d’Estudis Espacials de Catalunya
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Abstract
After reviewing some essential features of the Casimir effect and, specifically,
of its regularization by zeta function and Hadamard methods, we consider
the dynamical Casimir effect (or Fulling–Davies theory), where related
regularization problems appear, with a view to an experimental verification of
this theory. We finish with a discussion of the possible contribution of vacuum
fluctuations to dark energy, in a Casimir-like fashion, that might involve the
dynamical version.

PACS numbers: 42.50.Lc, 03.70.+k, 11.10.Ef

1. Introduction

It was observed some time ago that the universe expansion accelerates. This important
discovery is still in search of an explanation. It could in fact be found within Einsteinian
gravity, even if the only possibility there seems to be to consider the contributions of the
quantum vacuum fluctuations of the fields pervading the universe to the cosmological constant,
as was discussed by Zeldovich in a quite convincing way many years before the acceleration
of that expansion was discovered [1]. This would be nice and, in principle, requires no new
physics, however there are several problems, such as (i) the cosmological constant problem,
that is, the contribution of the vacuum fluctuations seems to be exceedingly large, as compared
with the mentioned astrophysical observations and (ii) the coincidence problem, related to the
fact that in relative terms the associated energy is, in the present epoch, such a large part (over
72%) of the whole energy content of the universe (that is, of the same order of magnitude and
even dominating the energy content of the universe). If we pay the price to modify Einstein’s
theory, then things become easier to adjust, but other problems emerge. One cannot be happy
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with such a number of possibilities, with increasing numbers of parameters, and many are just
effective or phenomenological models: tensor, scalar–tensor, phantom, etc.

Here we will discuss a couple of specific problems of the vacuum fluctuations approach
only, some of rather technical, the other of more fundamental nature, in relation to the
regularization of quantum field theories in the presence of boundaries and with the so-called
dynamical Casimir effect. We will recall a piece of sound mathematics needed for the
regularization issue. Then we will explicitly illustrate an important aspect of this issue,
namely, the introduction of physically meaningful regularization parameters, for the case of
the dynamical Casimir effect. We will finish with a discussion of possible cosmological
imprints of the Casimir effect, in some particular models.

2. Casimir effect: on the boundary divergences

Imposing mathematical boundary conditions on physical quantum fields is not easy, as first
discussed by Deutsch and Candelas [2], who quantized EM and scalar fields near a smooth
boundary and calculated the renormalized vacuum expectation value of the stress–energy
tensor to find that the energy density diverges as the boundary is approached. Regularization
and renormalization did not seem to cure the problem with infinities in this case, and an infinite
physical energy was obtained if the mathematical boundary conditions were to be fulfilled.
In an attempt to solve this, the authors argued that physical surfaces have nonzero depth, and
this could be taken as a dimensional cutoff to regularize the infinities. Later, Kurt Symanzik
did a rigorous analysis of quantum field theory in the presence of boundaries [3]. Prescribing
the value of the quantum field on a boundary means using the Schrödinger representation, and
Symanzik was able to show it to exist to all orders in the perturbative expansion. The issue
was proven to be meaningful within the domains of renormalized quantum field theory. In
this case, the boundary conditions and the hypersurfaces themselves were treated at a pure
mathematical level (zero depth) by using delta functions.

New approaches to the problem have been postulated recently (see, e.g., [4]). Boundary
conditions on a field, φ, are enforced on a surface, S, by introducing a scalar potential, σ , of
Gaussian shape living on and near the surface. When it becomes a delta function, the boundary
conditions (Dirichlet here) are enforced: the delta-shaped potential kills all the modes of φ at
the surface. For the rest, the quantum system undergoes a full-fledged quantum field theory
renormalization, as in the case of Symanzik’s approach. The results obtained confirm [2] in
the several models studied but do not agree with [3]. They are also in contradiction to many
textbooks and review articles dealing with the Casimir effect [5], where no infinite energy
density when approaching the Casimir plates had been reported.

In some circumstances, specific regularization methods have been employed with success,
as zeta function [6] and Hadamard regularization, this last in higher-post-Newtonian general
relativity [7] and in recent variants of axiomatic and constructive quantum field theory [8].
Among mathematicians, Hadamard regularization is a rather standard technique in order to deal
with singular differential and integral equations with boundary conditions, both analytically
and numerically (for a sample of references, see [9]). Indeed, Hadamard regularization is
a well-established procedure in order to give sense to infinite integrals [10]. Hadamard
convergence is also one of the cornerstones in the rigorous formulation of quantum field theory
through micro-localization, considered by specialists to be the most important step towards the
understanding of linear partial differential equations since the invention of distributions (for a
beautiful, updated treatment of Hadamard’s regularization, see [11]). In [10], the Hadamard
regularization was invoked in order to fill the gap between the infinities appearing in the
quantum field theory renormalized results and the finite values obtained in the literature with
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other procedures. It was seen that the finite results derived using Hadamard’s regularization
coincide with the values obtained using the more classical and less rigorous methods in the
literature on the Casimir effect. Moreover, Hadamard’s prescription is able to separate and
identify the singularities as physically meaningful cutoffs. Although the strict significance
of this additional regularization is still not well understood, the fact that it is able to bridge
the two approaches is already remarkable. In the following section, we present a case in a
much related situation which can also serve as an example of the regularization issue in the
Deutsch–Candelas fashion: we will clearly prove the advantages of using a prescription that,
even if mathematical in nature, is very well adapted to proposed laboratory experiments.

3. The dynamical Casimir effect (Davies–Fulling)

The Davies–Fulling model [12, 13] describes the creation of massless particles by a moving
perfect mirror following a prescribed trajectory. This phenomenon is also termed the dynamical
Casimir effect. Moving mirrors modify the structure of the quantum vacuum, what manifests in
the creation and annihilation of particles. Once the mirrors return to rest, a number of produced
particles will generically still remain and can be interpreted as radiated particles. This flux has
been calculated in the past in several situations by using different methods, as averaging over
fast oscillations [14, 15], by multiple scale analysis [16], with the rotating wave approximation
[17], with numerical techniques [18] and others [19]. Here we are interested in the production
of the particles and their possible energy values while the mirrors are in movement. This is in
no way a simple issue and a number of problems have recurrently appeared in the literature
when trying to deal with it. To start, it is in this case far from clear which is the appropriate
regularization to use. Different authors tend to employ different prescriptions, forgetting
sometimes about the need to carry out a proper (physical) renormalization procedure, as was
also the case in the other situations described in the preceding section. Thus, it turns out that
ordinarily, in the case of a single, perfectly reflecting mirror, the number of produced particles
as well as their energies diverge all the time while the mirrors move. Several prescriptions
have been used in order to obtain a well-defined energy, however, for some trajectories this
finite energy is not a positive quantity and cannot clearly be identified with the energy of the
produced particles (see, e.g., [12]).

The approach I will describe here is a joint work with Haro [20], and relies on two very
basic ingredients. First, the proper use of a Hamiltonian method and, second, the introduction
of partially transmitting mirrors, which become transparent to very high frequencies. We have
been able to prove in this way, both that the number of created particles remains finite and also
that their energies are always positive, for the whole trajectories corresponding to the mirrors’
displacement. We have also calculated from first principles the radiation–reaction force that
acts on the mirrors owing to the emission and absorption of the particles, and which is related
to the field’s energy through the ordinary energy conservation law. As a consequence, the
energy of the field at any time t is seen to equal, with the opposite sign, the work performed
by the reaction force up to this time t [21, 22]. Such force is usually split into two parts
[23, 24]: a dissipative force whose work equals minus the energy of the particles that remain
[21], and a reactive force, which vanishes when the mirrors return to rest. It can be seen that the
radiation–reaction force calculated from the Hamiltonian approach for partially transmitting
mirrors satisfies, at all times during the mirrors’ oscillation, the energy conservation law and
can naturally account for the creation of positive energy particles. Also, the dissipative part
obtained within this procedure agrees with the one calculated by other methods, as using
the Heisenberg picture or other effective Hamiltonians (but those methods have traditionally
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encountered problems with the reactive part, which in general yields a non-positive energy
that cannot be considered as that of the particles created at any specific t).

4. A consistent formulation: semi-transparent mirrors

One of the main ingredients of the method is to use partially transmitting mirrors, which
become transparent to very high frequencies (this is given by an analytic matrix). The
second main ingredient is the proper use of a Hamiltonian method and the corresponding
renormalization. We proved both that the number of created particles is finite and that their
energy is always positive, for the whole trajectory during the mirrors’ displacement. The
radiation–reaction force acting on the mirrors owing to emission–absorption of particles is
related to the field’s energy through the ordinary energy conservation law: the energy of the
field at any time t equals (with opposite sign) the work performed by the reaction force up to
this time t. Such force is split into two parts: a dissipative force whose work equals minus
the energy of the particles that remain and a reactive force vanishing when the mirrors return
to rest. The dissipative part obtained agrees with the corresponding one from other methods.
But those have problems with the reactive part, which in general yields a non-positive energy
(which is not our case). To be noticed is that several proposals at an experimental verification
of the dynamical Casimir effect have been issued recently.

4.1. Some details and examples

We use a Hamiltonian method for a neutral Klein–Gordon field in a cavity �t , with boundaries
moving at a certain speed v � c, ε = v/c (of order 10−8 in the experimental proposal [25]).
Assume the boundary is at rest for time t � 0 and returns to its initial position at time T .
The Hamiltonian density is conveniently obtained using the method in [26]. The Lagrangian
density of the field is

L(t, x) = 1
2 [(∂tφ)2 − |∇xφ|2], ∀ x ∈ �t ⊂ R

n, ∀ t ∈ R. (1)

Transform now the moving boundary into a fixed one by the (non-conformal) change of
coordinates

R: (t̄ , y) → (t (t̄ , y), x(t̄ , y)) = (t̄ , R(t̄ , y)), (2)

which converts �t into a fixed domain �̃: (t (t̄ , y), x(t̄ , y)) = R(t̄ , y) = (t̄ , R(t̄ , y)) (with t̄

the new time).
The Hamiltonian density is

H̃(t̄ , y) = 1
2 (ξ̃ 2 + J |∇xφ|2) + ξ̃ (∂t̄ φ̃ −

√
J∂tφ), (3)

being φ̃ the field, ξ̃ the conjugate momentum and J the Jacobian of the change d3x ≡ J d3y.
It turns out that

H(t, x) = E(t, x) + ξ(t, x)〈∂sR(R−1(t, x)),∇xφ(t, x)〉 + 1
2ξ(t, x)φ(t, x)∂s(ln J )|R−1(t,x). (4)

As a simple example, for a single mirror following the prescribed trajectory R(t̄, y) =
y + εg(t̄), we explicitly get

H(t, x) = E(t, x) + εġ(t)ξ(t, x)∂xφ(t, x). (5)
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4.2. Case of a single, partially transmitting mirror

In the original Davies–Fulling model [12], the renormalized energy is negative while the mirror
moves; it cannot be considered as the energy of the produced particles at time t [cf paragraph
after equation (4.5)]. An interpretation of this fact is that a perfectly reflecting mirror is non-
physical. One should consider, instead, a partially transmitting mirror, transparent to high
frequencies, what is indeed a mathematical implementation of a physical plate, continuing our
discussion in the preceding section.

Consider the trajectory (t, εg(t)). When the mirror is at rest, scattering is described by
the matrix

S(ω) =
(

s(ω) r(ω) e−2iωL

r(ω) e2iωL s(ω)

)
. (6)

This S matrix is taken to be (x = L position of the mirror) (i) real in the temporal domain:
S(−ω) = S∗(ω), (ii) causal: S(ω) is analytic for Im(ω) > 0, (iii) unitary: S(ω)S†(ω) = Id
and (iv) the identity at high frequencies: S(ω) → Id, when |ω| → ∞, s(ω) and r(ω) being
meromorphic (cutoff) functions: the material’s permittivity and resistivity, respectively.

The results obtained are rewarding, and we can clearly see the origin of the divergence,
in the perfect boundary conditions case, and its simple cure obtained in the semi-transparent
mirror case. In fact, in this Hamiltonian approach the obtained force is

〈F̂Ha(t)〉 = − ε

2π2

∫ ∞

0

∫ ∞

0

dω dω′ωω′

ω + ω′ Re [e−i(ω+ω′)t ̂̇gθt (ω + ω′)]

× [|r(ω) + r∗(ω′)|2 + |s(ω) − s∗(ω′)|2] + O(ε2), (7)

the integral diverges for a perfect mirror (r ≡ −1, s ≡ 0, ideal case), but nicely converges for
our partially transmitting (physical) one, where r(ω) → 0 and s(ω) → 1 as ω → ∞. Energy
conservation is fulfilled: the dynamical energy at any time t equals, with the opposite sign,
the work performed by the reaction force up to that time t

〈Ê(t)〉 = −ε

∫ t

0
〈F̂Ha(τ )〉ġ(τ ) dτ. (8)

The case of two partially transmitting mirrors is not so different. A similar, albeit more
involved analysis, can be carried out [20]. No basic obstruction is envisaged to extend our
procedure to higher dimensions and fields of any kind.

5. Cosmological imprint of the Casimir effect?

Although we still seem far from having an idea of what a fully-fledged theory of quantum
gravity will look like in the end, semi-classical approaches to this issue led to the seminal idea,
first clearly stated by Zeldovich [1], that quantum vacuum fluctuations, as a form of energy,
must ‘gravitate’, that is, must enter into the vacuum expectation value of the stress–energy
tensor 〈Tµν〉 ≡ −Egµν on the rhs of Einstein’s equations

Rµν − 1
2gµνR = −8πG(T̃µν − Egµν). (9)

There may be subtleties in this argumentation, e.g., those pertaining to the following question:
do quantum vacuum fluctuations fulfil the equivalence principle of general relativity? This
seems to have been settled down very recently [27], but there are still contradictory answers
in the literature [28]. This will affect cosmology, since T̃µν excitations above the vacuum are
in fact equivalent, in a given time slice, to a cosmological constant � = 8πGE .
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Recent observations yield the value [29]

�obs = (2.14 ± 0.13 × 10−3eV)4 ∼ 4.32 × 10−9 erg cm−3. (10)

As we said, the cosmological constant gets contributions from zero point fluctuations [1]

E0 = h̄c

2

∑
n

ωn, ω = k2 + m2/h̄2, k = 2π/�. (11)

But evaluating in a box and putting a cutoff at maximum kmax corresponding to reliable
quantum field theory physics (e.g. the Planck energy), one immediately gets the very huge
number

ρ ∼ h̄k4
Planck

16π2
∼ 10123ρobs. (12)

This is possibly the largest discrepancy between the theory and observation ever encountered
in physics.

Assuming one will be able to prove that the ground value of the cc is zero, we will be
left with this incremental value coming from the topology or boundary conditions. This sort
of two-step approach to the cosmological constant is becoming very popular recently as the
most accessible way to try to solve this extremely difficult issue [30]. We have then to see,
using different examples, if this value acquires the correct order of magnitude—corresponding
to the one coming from the observed acceleration in the expansion of our universe—under
some reasonable conditions. The idea is to involve the global topology of the universe [31],
in connection with the possibility that a faint scalar field pervading the universe could exist.
Fields of this kind are ubiquitous in inflationary models, quintessence theories and the like.
Also, given the fact that the universe expands, it is plausible that the dynamical Casimir effect
should play a role in this discussion. Actually, one does not pretend in this way to solve the old
problem of the cosmological constant, not even to contribute significantly to its understanding,
but just to present simple and usual models which show that the right order of magnitude of
(some contributions to) ρV which lie in the precise range deduced from the astrophysical
observations may be not difficult to get. In different words, we only address here the ‘second
stage’ of what has been termed by Weinberg [32] the new cosmological constant problem.
It should be mentioned however, in this context, that there are some authors saying that the
old cosmological constant problem is in fact trivial (see, e.g., [33]). That in any emergent
gravity theory the natural value of the energy of the perfect non-perturbed vacuum (and thus
of the cosmological constant) is exactly zero. The small, nonzero value that we see just comes
from perturbations of the vacuum, due to the expansion of the universe, gravitating matter and
effects of boundaries as discussed below.

5.1. Simple model with large and small compactified dimensions

We assumed the existence of a scalar field extending through the universe and calculated the
contribution to the cosmological constant from the Casimir energy density of this field, for
some typical boundary conditions. Ultraviolet contributions must be safely set to zero by some
mechanism of a fundamental theory. Another hypothesis is the existence of both large and
small dimensions (the total number of large spatial coordinates being always three), some of
which may be compactified, so that the global topology of the universe plays an important role.
There is a quite extensive literature both in the subject of what is the global topology of spatial
sections of the universe [31] and also on the issue of the possible contribution of the Casimir
effect as a source of some sort of cosmic energy, as in the case of the creation of a neutron star
[34]. There are arguments that favor different topologies, as a compact hyperbolic manifold for
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the spatial section, what would have clear observational consequences [35]. Other interesting
work along these lines was reported in [36] and related ideas have been discussed very recently
in [37]. However, we differ from all those in that we put emphasis just in obtaining the right
order of magnitude for the effect. At the present level, it has no sense yet to consider more
specifications concerning the nature of the field, the different models for the topology of the
universe and the different boundary conditions possible, with its effect on the sign of the force
too. This is left to future analysis. From previous results [38], we know that the range of
orders of magnitude of the vacuum energy density for the most common possibilities is not so
widespread, and may only differ by at most a couple of digits. This allows us, both for the sake
of simplicity and universality, to deal with two simple situations, corresponding to a scalar
field with periodic boundary conditions or spherically compactified. As explained in [39],
most cases with usual boundary conditions reduce to those, from a mathematical viewpoint.

For lack of space we will not describe these models in detail here (this has been
done elsewhere [40]). Suffice to say that it can be proven that the contribution of the
vacuum energy of a small-mass scalar field, conformally coupled to gravity, and coming
from the compactification of some small (2 or 3) and some large (1 or 2) dimensions—with
compactification radii of the order of 10–1000 the Planck length in the first case and of the
order of the present radius of the universe, in the second—lead to values that compare well
with observational data, in order of magnitude, with the exception of the sign—which turns
out to be opposite to the one needed to explain negative pressure. To deal with this crucial
issue, we consider the two following classes of models.

5.2. Braneworld models

Braneworld theories may hopefully solve both the hierarchy problem and the cosmological
constant problem. The bulk Casimir effect can play an important role in the construction
(radion stabilization) of braneworlds. We have calculated the bulk Casimir effect (effective
potential) for conformal and massive scalar fields [41]. The bulk is a five-dimensional AdS or
dS space, with 2 (or 1) four-dimensional dS branes (our universe). The results obtained are
quite consistent with the observational data.

5.3. Supergraviton theories

We have also computed the effective potential for some multi-graviton models with
supersymmetry [42]. In one case, the bulk is a flat manifold with the torus topology R × T

3,
and it can be shown that the induced cosmological constant can be rendered positive due
to topological contributions [43]. Previously, the case of R

4 had been considered. In the
multi-graviton model the induced cosmological constant can indeed be positive, but only if
the number of massive gravitons is sufficiently large, what is not easy to fit in a natural way.
In the supersymmetric case, however, the cosmological constant turns out to be positive just
by imposing anti-periodic boundary condition in the fermionic sector. An essential issue in
our model is to allow for non-nearest-neighbor couplings.

For the torus topology we have got the topological contributions to the effective potential
to have always a fixed sign, which depends on the boundary condition one imposes. They are
negative for periodic fields, and positive for anti-periodic ones. But topology provides then a
mechanism which, in a natural way, permits to have a positive cosmological constant in the
multi-supergravity model with anti-periodic fermions. The value of the cosmological constant
is regulated by the corresponding size of the torus. We can most naturally use the minimum
number, N = 3, of copies of bosons and fermions, and show that—as in the first, much more
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simple example, but now with the right sign!—within our model the observational values
for the cosmological constant can be approximately matched, by making quite reasonable
adjustments of the parameters involved. As a byproduct, the results that we have obtained [43]
might also be relevant in the study of electroweak symmetry breaking in models with similar
type of couplings, for the deconstruction issue.
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